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Tracking Performance of the RLS Algorithm 
Applied to an Antenna Array in a Realistic 

Fading Environment 
Brian C. Banister and James R. Zeidler, Fellow, IEEE 

Abstract—In this paper, frequency domain techniques are used 
to derive the tracking properties of the recursive least squares 
(RLS) algorithm applied to an adaptive antenna array in a mobile 
fading environment, expanding the use of such frequency domain 
approaches for nonstationary RLS tracking to the interference 
canceling problem that characterizes the use of antenna arrays in 
mobile wireless communications. The analysis focuses on the effect 
of the exponential weighting of the correlation estimation filter 
and its effect on the estimations of the time variant autocorrelation 
matrix and cross-correlation vector. Specifically, the case of a 
flat Rayleigh fading desired signal applied to an array in the 
presence of static interferers is considered with an AR2 fading 
process approximating the Jakes' fading model. The result is a 
mean square error (MSE) performance metric parameterized by 
the fading bandwidth and the RLS exponential weighting factor, 
allowing optimal parameter selection. The analytic results are 
verified and demonstrated with a simulation example. 

Index Terms—Antenna array, fading, multipath, recursive least 
squares, RLS, spectral analysis. 

I. INTRODUCTION 

THE use of mobile wireless systems has been growing 
rapidly, and with this growth has come the need for 

greater network capacity and a corresponding increase in the 
sophistication of the communication systems themselves. An 
important area for the enhancement of network capacity is 
the use of antenna arrays, which can provide performance 
enhancement through both interference suppression and spatial 
fading diversity [1], [2]. The mobile wireless channel provides 
special difficulties for receive array algorithm design, giving 
rise to fast fading channels that must be accurately estimated 
and tracked for coherent modulation systems. This paper 
analyzes the tracking performance of such an antenna array 
when recursive least squares (RLS) is used to generate the 
combining weights. 
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Due to their relative simplicity, algorithms employing 
weighted linear combining of the signals from each antenna 
are most commonly considered, and many such algorithms 
exist [3]. Wiener combining techniques, which were originally 
applied to the antenna problem by Widrow et al. in [4], provide 
the linear output estimate of the desired signal with minimum 
mean square error (MMSE). Wiener combining can be consid- 
ered optimal in the additional sense of providing the maximum 
a posteriori (MAP) signal estimate in the presence of Gaussian 
noise and interference [5], which is commonly applied to 
the decoding of received signals [2]. Previous results on the 
performance of Wiener algorithms applied to antenna arrays 
have derived the average signal-to-interference ratio [6] and 
outage probabilities [7] for array systems with perfect tracking 
in a fading environment. Metrics such as mean squared error 
(MSE) and bit error rate (BER) for receive antenna arrays in 
a fading environment have been found by simulation [8]—[10]. 
This paper goes further in that it provides analytic results for the 
tracking performance of RLS in such an environment, allowing 
optimization of performance in the Rayleigh fading channel. 

RLS [11], typically exponentially weighted (EW-RLS), is a 
commonly considered adaptive Wiener technique. Tracking of 
adaptive prediction with RLS has been analyzed for zero band- 
width [12] and finite bandwidth [13] chirped signals. Optimiza- 
tion of the windowing function for prediction of a chirped signal 
is considered in [ 14]. Tracking in system identification problems 
has been studied in [15]-[18] for a first-order Markov process. 
These previous results consider the performance of RLS for pre- 
diction and identification problems in nonstationary environ- 
ments with simple models defined by a single parameter and a 
static or deterministically time-variant receive vector autocorre- 
lation matrix. These models do not apply to the interference can- 
celing problem characterizing a receive antenna array in com- 
munications, and such closed-form tracking analyses cannot be 
found for the interference canceling problem. 

Spectral techniques have been applied to RLS tracking anal- 
ysis of system identification applications in [19] and [20]. An 
important advance to the analysis of RLS tracking in [19] is the 
derivation of the MSE for a general class of signals in terms of 
the power spectral density (PSD) of the nonstationarity. In addi- 
tion to deriving the MSE performance of EW-RLS, [19] shows 
that weighting functions other than the exponential weighting 
give better performance and derives the optimal weighting as a 
function of the PSDs of the nonstationary process and the noise. 

This paper derives the MSE at the output of an RLS combiner 
for an antenna array operating with a model of a dynamic fading 

20090803055 
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Fig. I.    Block diagram of the adaptive combiner with crossover detector modeling bit decisions for BER simulations. 

channel appropriate to mobile wireless communications prob- 
lems. The system block diagram is shown in Fig. 1. Similar to 
[19], spectral analysis tools are applied to the analysis problem. 
However, it is found that the array problem introduces an addi- 
tional hurdle to the analysis. In the system presented in [ 19], the 
autocorrelation matrix of the received vector is time invariant, 
whereas in the array problem, this matrix is time variant, and the 
resulting effects must be carefully considered. A new technique 
of quasideterministic approximation of the least square (LS) 
sample correlation matrix that captures its relationship with the 
sample cross-correlation vector is introduced. It is found that 
the effects of the LS weighting function and fading PSD can be 
separated from the statistical expectations, providing a tractable 
analytic solution. The results allow for the selection of the op- 
timal exponential "forgetting" factor for EW-RLS. 

In the interest of tractability, the channel model has been sim- 
plified to a level that allows demonstration of the relevant per- 
formance measures. Signals are represented in discrete time. 
All impinging signals are considered to be planewaves from the 
far-field, and the modulation is considered to be "narrowband" 
in the sense that the time delay across the array can be mod- 
eled as a carrier phase shift. The desired signal is degraded by 
flat Rayleigh fading with an approximate Jakes Doppler spec- 
trum defining the fading process, whereas the interfering signal 
channels are static. While the system under study is assumed 
to be DS-CDMA, issues of code phase tracking and resolv- 
able multipath are ignored in favor of clearly demonstrating the 
channel-tracking properties of the RLS algorithm. It is worth 
noting, however, that the RLS algorithm would, in practice, have 
to be applied independently to each of several resolvable mul- 
tipath signals in a DS-CDMA system. Thus, the analysis here 
presented would apply equally to each such path. 

desired mobile 

interlerers 

Fig. 2.    Environmental conditions modeled in the analysis. 

model allows for performance enhancement from the array due 
to beam steering and null forming but not from receive diver- 
sity. Similarly, the time dispersion is small so that multipath is 
not resolvable in the receiver. If the local scatters are uniformly 
distributed around the mobile, then the fading envelope has a 
correlation defined by the Jakes' model [22]. 

There are M + 1 users, with baseband signals represented 
by the (M + 1) x 1 vector x[n]. These modulation streams are 
assumed to have constant unit power, to be independent from 
each other, and to be uncorrelated from time sample to time 
sample so that 

E(x[n]x."[n - m] = IS[m\) (1) 

where 6[m] is the Kronecker delta function. This signal model 
may represent DS-CDMA sampled at the chip rate or a narrow 
band system sampled at the symbol rate. 

xo[n] is the signal of the desired transmitter. It is convenient 
at several points to consider the aggregated interferers, and a 
tilde is used throughout for this purpose so that 

II. PRELIMINARIES 

A.  Vector Signal Models for a Signal and Interference 

An overview of models that have been considered for use with 
antenna arrays is presented in [21]. This study uses the simplest 
possible fading model and neglects issues of time and angular 
dispersion in order to focus on the performance of the adaptive 
tracking. The channel model corresponds to that shown in Fig. 2, 
where the desired mobile experiences local multipath reflec- 
tions. The angular dispersion <p of the desired mobile's signal 
as received by the base station is small; therefore, the fades ex- 
perienced by the multiple antennas are identical. This channel 

FiM   xnn\ xM\n\ (2) 

The signal received by the N antennas is a linear combination 
of the signals from the M + 1 users, as determined by the time- 
varying channel matrix C[n], plus a white noise term v[n]. 

u[n] = C[n]x[n] + v[n]. (3) 

The channel matrix is comprised of the response of the desired 
signal and of the interferers, giving 

C[n] = [co[n]    C]. (4) 
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The white noise term has an autocorrelation given by 

£(v[n]vH[n - m\) = a2
vI6[m]. (5) 

For an array operating on signals from point sources in the far 
field, the channel matrix can be given as 

C[n] = DA[n] (6) 

where D is the matrix comprised of the uniform linear array 
(ULA) steering vectors [21 ] of the M + l users and N antennas, 
and A[n] is the time-varying diagonal matrix giving the time- 
varying complex channel gains for each user. We then have (7), 
shown at the bottom of the page, and 

A[n] = 

«oN 
"i 

«M 

al = £(|«o[n]|2) 

(8) 

(9) 

where «oM is the complex channel gain of the Rayleigh fading 
desired signal, and «,: for i.^ 0 is a constant channel gain asso- 
ciated with each of the interferers. The use of constant channel 
gains for each interferer contributes to the tractability of the 
analysis since the value of 7, which was introduced in (78), is 
constant. For a number of interferers significantly larger than 
the number of antennas, one would expect that the results with 
constant gains would approximate the result with fading inter- 
ferers. A is the wavelength normalized linear antenna spacing 
for a carrier frequency u>, and 6i is the angle of arrival of the ith 
signal. 

(antenna spacing distance.) 
2w • (speed of light) 

For simplicity of notation, Ec{ •) O E(-\ C[n]) will denote 
expectation given the random channel. The received vector has 
a time-varying instantaneous autocorrelation matrix given by 

R[n] = £c(u[n]u"W) 
= R + c0[n]c^[n] (10) 

where the correlation matrix of the noise and interference is 
given by 

R = CC" + ail. (11) 

The instantaneous cross-correlation of the received vector and 
the desired signal is 

p[n] = Ec(u[n]x*0[n]) 

(12) 

B.  Time- Varying Channel 

It will be important to be able to decompose the channel gain 
of the fading signal into terms that are dependent and indepen- 
dent of the instantaneous realization of the channel at a given 
point in time. This decomposition is possible for a Gaussian 
random process as the decomposition can be done along the 
lines of correlated and uncorrelated components. This can be 
applied to the fading channel gain as the Rayleigh random 
process (the gain magnitude) arises from a two-dimensional 
(2-D) Gaussian complex gain. 

Let p[m] be the normalized autocorrelation function of the 
channel gain; then 

E{a0*[n]a0[n + m\) = alp[m] (13) 

In particular, p[m] may be the Bessel function of the first kind of 
zero order that arises from Jakes' model. Note that the normal- 
ization by the mean fade power gives p[0] = 1. The normalized 
power spectral density (PSD) of the fading process is P(c-,'u;), 
which is the Fourier transform of p[n\. 

The stochastic channel gain can be decomposed into terms 
relative to the realization at time n, giving 

a0[n + m] — p[m]a0[n] + i/n [n + m). (14) 

The complex Gaussian process un [k] is defined relative to t»o[n], 
and 

E(a[n]isn
t[k]) = Q    VA; 

E(Vn[k]) = 0 

E(vn[i]"n*[k]) =al{p[i- k] p[i i}p*[k 

(15) 

(16) 

n]).   (17) 

III. ANALYSIS 

A. RLS System Definition and Analysis Approximations 

The excess MSE due to weight misadjustment is decomposed 
into contributions from weight lag and weight noise [11]. The 
lag component arises from the response of the weights to the 
time-varying channel, whereas the noise component arises due 
to noisy estimation. The general LS formulation is 

00 

R[n] =   J2   !>[n-k]u[k]u"[k] 
k=—00 

00 

p[n] =   V*   h[n — k]u[k]xo*[k] 

MPM 
HI xo[n\ = w    n uln 

(18) 

(19) 

(20) 

(21) 

D = [d0 

1 
e-j2n-Aco8(#0) 
e-j4wAcos(e0) 

1 
C-J2IACO«(»I) 

e->4*-Acos(»i) 

j(2N-2)nAcos($0) -j(2./V-2)*-Acos(0i) 

e-j'27rAcos(9A<) 

e-j47rAcos(SA<) 

e-j(2JV-2)irAco.(»M) 

(7) 
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The sequence h[n] is herein considered an estimation filter 
that sums to unity (unit gain at zero frequency) and has a Fourier 
transform given by H(eJu;). The EW-RLS procedure with an 
exponential forgetting factor A < 1 recursively generates the 
weighted sample autocorrelation matrix R and cross-correla- 
tion vector p with adaptation rate defined as ft = 1 - A, where 
larger ft gives a faster adaptation. As in [19], the performance 
using the a priori weights is considered. Defining the a priori es- 
timation filter impulse response h[n] for normalized1 EW-RLS 
as 

h[n] = 
0, 
(l-A)A"-1, 

n < 0 
n > 0 

the a priori estimation error is 

en = x0[n\ - x0[n\ 

(22) 

(23) 

The instantaneous MSE given the channel and the estimates is2 

Jcft.H=£c{|eH|2R[n],p[n]} 

= p^nJR^HRHR-^nlpH 

-P^HR-VIPM 
-p^nlR^MpM + l (24) 

where R[n] is the instantaneous statistical autocorrelation ma- 
trix, which is still a random function of the random channel. In 
order to proceed with the tracking analysis, the sample autocor- 
relation matrix will be assumed to reasonably approximated by 
considering it to be quasideterministic, given the instantaneous 
channel 

RD[n] = E(B.[n]\c[n-D]) 

= R[n] (25) 

R-VlRMR^M - £(R[«] I c[n - D])-1 

Rr (26) 

where D represents some delay relative to the realization time 
n introduced by the causal estimation. This assumption is an 
extension from similar assumptions that have been frequently 
made in previous tracking analyses of RLS systems [16], 
[11]-[13], where it has been assumed that the sample corre- 
lation matrix estimate is exactly the instantaneous statistical 
autocorrelation matrix. The approximation used herein is more 
precise in that effects of the estimation filter h[n] and the 
channel correlation can be considered. 

The cross-correlation estimate can be considered to be a per- 
turbation from the true value of the instantaneous cross-correla- 
tion. 

PM = Co fa] + f [n] (27) 

'The summations arc normalized by (1 — A) to conform to the unit zero fre- 
quency gain condition, emphasizing the estimation performed and simplifying 
portraying the error vector/matrix. The two factors cancel in (20); therefore, 
there is no net effect. 

'Note that £(i0["]i;[n]) = 1, 

Applying the quasideterministic approximations and taking the 
expectation over the estimates, the resulting expression is3 

Jc[n] Si l-c{'[n]RD [n]c0[n]+tr   RD [n]Ec(f[ [n]f>])) 

(28) 
where tr() is the trace function, which is the sum of the diagonal 
components of a matrix. 

B. Sample Correlation Matrix Approximation Tip [n] 

The sample autocorrelation matrix approximation (25) cap- 
tures the effect of the filtering of the "squared" outer vector 
product. Since each sample vector u[n] contributes only non- 
negatively4 to any eigenvalues of the resultant matrix R[n], this 
filtered version is less likely to attain nulls than the instanta- 
neous realization of R[n] itself, which is important when the 
fading channel gain term a[n] in the inverted matrix may be 
canceling the channel gain term in p[n]. Further, the estima- 
tion filter h[n] has a nonzero filter delay, and one would expect 
that the estimate of R[n] generated will thus have a certain lag. 
The approximation defined here allows for some consideration 
of these effects. It is clear that the expectation of the interferer 
terms of (25) can extracted from the summation, leaving 

RD[n] = R + £[   ^2  h[n - k)c[k]cH[k] c0[n - D] 

(29) 
The channel vector is then decomposed into components that 
are correlated and uncorrelated with the fading process at time 
(n — D), according to the decomposition of (14), as is done 
elsewhere in the lag analysis of Section III-E. 

/     - 
RD[n] = R + ddH • E     ^  h[n - k]\p[k -n + D] 

a[n-D]\.    (30) x a[n-2?] + i/„_£>[A;]|a 

Taking this expectation leaves 

RD[n] = R + dd" • j \a[n - D}\2   ^   h[n - k] 

x \p[k - n + D]\2 + af-,  ^  h[n-k] 
&= — OO 

X (l-\p[k-n + D}\2)Y 

Define the summation /{ 2 

(31) 

l[fs   £   h[-k}\P[k + D]f (32) 

'Here, the matrix relations tr(AB) = tr(BA) andaHBa = tr(awBa) arc 
used, as used repeatedly throughout the analysis. 

4Notc that this statement requires that the filter response h[n] chosen is non- 
negative as, for example, in standard EW-RLS or rectangular windowed LS. 
This is required for strictly ensured non-ncgativc dcfinitcncss of the resultant 
estimate. 
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Equivalently, this can be portrayed in the frequency domain as     idefined as follows: 

AD2   = — f        e^DH{cj"){P(eiu)®P(eiw))<Lj  (33) 
27T ./„„_„. 

z[n] = a;0*H •    ^2xk[n]ck + v[n] 
fc=i 

(35) 

where © denotes cyclic convolution. Note that the integral sub- 
scripts of IXtU are selected throughout to refer to the order of 
the filter response x and the PSD y, respectively, in (33) and 
(56)—{58). The delay argument D appears only when the order 
of h is unity (i.e., /{ 2 and I\ x ) so that there is no temporal 
symmetry. 

Then 

RD[n] = R + dd" • (|«[n - D]\2I$+o% (l -/$})) • 
(34) 

The inverse of this matrix is considered in Appendix A. 
The purpose of incorporating the delay component D is to 

portray the sample correlation matrix R[n] in a simplified form 
that captures the relationship between this matrix and the sample 
cross-correlation vector p[n], and the value of D is selected with 
this consideration. Setting D — 0 is the most simple choice 
but ignores the delay effects of the estimation filter; another 
simple but inadequate selection might be the dominant filter 
group delay, which for EW-RLS is given by A/(l — A) samples 
at zero frequency. In order to portray R[n] as function of a single 
instantiation of a[n — D] and best capture the relationship be- 
tween R[n] and p[n], the delay should be chosen to maximize 
the residual relationship after taking expectation. This is best 
accomplished by selecting D to maximize the cross-correlation 
between the delayed a[n — D] of the correlation matrix and the 
filtered a[n] of the cross-correlation vector, which is given by 
III [defined in (57)]. Hence, D is selected to maximize l[ x'. 

It is notable that this approximation to the time-varying 
sample autocorrelation matrix reduces to the instantaneous 
statistical autocorrelation when D = 0 and /} 2 — 1 0e-> 
the estimation filter is replaced with a delta function in time), 
providing an approximation similar to that of previous works 
[11]-[13], [16]; however, as we will discuss later, this ap- 
proximation would be inadequate to accurately describe the 
performance of the present system. 

C.  Characterizing RLS MSE in Terms of Lag and Noise 

Let the error involved in each sample cross correlation be 
z[n], which consists of the noise and interference terms. It 

The first and second moments of the cross correlation sample 
error are then given by 

Ec{z[n}) = 0 

Ec(x[n]zH[n - m]) = R6[m]. 

(36) 

(37) 

The lag and noise terms of the sample cross correlation vector 
error are defined as 

OO 

PlagH =     ^2    '*[" ~~ fc]C°[fc] - CoM <38) 
h=—oo 

oo 

PnoiseH =     ^    ''[" ~ k]ZM (39> 
A:= —oo 

and the error vector is given by 

f [n]  = PlagH + PnoiseN- (40) 

The lag and noise error vectors are independent so that the au- 
tocorrelation of f is 

£c(f[n]fH[n]) = £c(pi.g[n]pi^ffH) 

+ -EeCPnoiseNPnoise^M)-       (41) 

In order to obtain an overall cost measure, the expectation is 
performed over the channel variation. This final cost, averaged 
over the channel variations, is 

J = E(Jc[n}) 

(42) 

From (28), (38), and (39), the components of J arc found to 
be as in (43)-(45), shown at the bottom of the page. It is of 
interest to compare these results with those of [19]. As in [19], 
the noise and lag components of the cross-correlation error can 
be considered to arise from a noise filter /!noise[n] (which is 
referred to as /)(in [19]) and a lag filter /iiag[n] (which is referred 
to as hte in [19]), and the summations are convolutions with 
these filter responses. These two filters produce the combining 
weight errors from noise and adaptation delay ("lag"). From 
(38) and (39), these impulse responses are given by 

Magi' 

h[n] 

h\n] 6[n]. 

(46) 

(47) 

Jopt = l-E(c0"[n\R-1[n]co[n]) 
oo oo 

./tag = E(c0"[n]K-l[n]c0[n}) + E I tr   RD [n]  £    £   h[n - k]h  [n - i]co[»]coH[fc] 
k        \ i= — oo k= — oo 

-.EMi^n] E M«-<lco[»lc?[n]jJ-£;|trfiBM E h[n-i]co[n]c$[i\ 

4o« = E I tr ( RD [n]  ^    X)  h^n ~ ''  /l[n ~ ^ ~ ^ 
7- = —oo k= — oo 

(43) 

(44) 

(45) 
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Thus, with 0 here denoting time convolution 

f [n] = /)iag[n] <g> c0[n] + hnoise[n] ® z[n]. (48) 

In contrast to the system identification analysis of [19], this 
result is not yet definitive since in the analysis of [19], the au- 
tocorrelation matrix R[n] is explicitly assumed to be time in- 
variant based on the statistics of the source. In the context of 
system identification, this is a reasonable assumption. However, 
this condition is clearly not valid for the interference cancella- 
tion application now under analysis. The MSE cannot be char- 
acterized using only these filter values because there is an inter- 
action between the time variation of the correlation matrix and 
the cross-correlation vector. This is made explicit when consid- 

ering that RDM and R[n] in (43)-(45) are both functions of 
the sequence co[n], which also appears in the sample cross-cor- 
relation error summations. Thus, the present problem requires 
a more rigorous consideration of the interplay between these 
functions. This is presented in the following sections. 

D.  Optimal Time Varying Wiener Combiner 

The MSE performance of the time varying Wiener combiner 
with no tracking error was given in (43). Using the matrix in- 
version lemma result (77) from Appendix A gives 

|2 

(49) </0pt — 1 — hi 
«o 

Mn]\2J ,7 + |«0l 

where c*o[n] is complex Gaussian so that |ao[n]|2 follows an 
exponential distribution with mean aft, and 

E(   ia;[nM|2)=V/CT°Ei(-^o2)+l     (50) 
V7 + KN /    °o 

Jopt = -^e^»Ei(-7/a0
2) (51) 

and 

where Ei() is the exponential integral function [23]. 

E. Excess MSE Due to Lag 

The lag term (44) of the MSE is the most complicated as 
it incorporates the interaction of the channel variation in the 
cross-correlation vector and in the autocorrelation matrix. 

Recall that the angular dispersion of the arriving multipath is 
assumed to be very small (see Fig. 2), giving rise to correlated 
fading across all of the antenna elements. In this case, there is 
no diversity gain (only beam forming gain). This simplification 
allows us to decompose the correlation matrix and apply the ma- 
trix inversion lemma as in Appendix A. Then, using the results 

of (77) with (34) but separating «o[], where it cannot be ex- 
tracted from the summation, (44) becomes 

^lag = E 
KM!2 

7 + |«o[n]|2 

E^-oo Efcl-oo hin ~ *]% ~ fc]of0[i]a0*[fc] 

-2E 

7 + ^(l-/{")) +Hn-£>]|*/£) 

Ei^-oo h\n - i]Re(a0[t]<V[n])     ^ 

+ a2(l-/^)) + |«[n-Z)]|2/1
( (D) 

2 

•(52) 

Then, ao[i] is decomposed relative to time (n - D), as in 
(14), such that the expectation can be separated along the lines 
of independent components, as in (53), shown at the bottom of 
the page. Extracting «o[" - D\ from the summation, taking the 
expectation within the summation using the autocorrelation of 
the orthogonal process vn [ • ] (17), and discarding the vanishing 
cross terms gives (54), shown at the bottom of the next page. 
The form of (54) shows that the effects of the channel gain PDF 
have been decoupled from the effects of the channel gain auto- 
correlation. Further analysis is then broken into finding the ex- 
pectation, which characterizes the channel PDF, and computing 
the summations, which contain the channel correlation function. 
A similar decoupling could be found for Ricean or Nakagami 
fading PDF as they can both be characterized by Gaussian pro- 
cesses. 

Of the expectations in (54), one was already considered (50), 
and the other is given by 

1 

+ cx2(l-/^)) + |«[n-JD]|2/1
( 

2 

AD)   2 
1l,2 a0 

exp 
AD)   2 
Jl,2 "0 

x Ei — 
7 + ^(l-iff)' 

Define inverse transform integrals for n = 0 

(55) 

(56) 

(57) 

Ji&g — E 

+ 

"on 
I 7 -f- \a[n]\2 

E^-oc IX-OO 
hin - k]h[n - i](p[i -n + D]a0[n -D}+ un.D[t\)(p*[k -n+ D]aQ*[n -D} + vn-D*[k\) 

7 + a2(l-/^)) + |«[n-JD]|2/1^
) 

2£^-oo h[n - i]Re((p[* - n+ D]a0[n -D] + un_D\i])(p'[D]ao*[n -D} + v„-D,[n]» 

7 + <7, o2(l-^) + \a\n • D]\*I[D) 
(53) 
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/„ n = _L  /    \H(e*")\2dui                           (58) E Excess MSE Due to Weight Noise Error 

* The excess MSE due to weight noise error was given in (45). 
Applying the results for the expectations (50), (55), and the Again, decomposing R[n - D] and applying the matrix inver- 

frequency domain integrals (56)-(58) yields sion lemma gives 

7        I   2        /               2\ oo          oo 

Jiag = ^//a° Ei (-7/<70) +1 jnoise = Y, E % - «wn - m - k\ 
1         /i              i2                      y                            v \ i=-ooA:=-oo 

+ -£, (|C| - -(«)) £ /               ,„„,„.„,,               N 
/-r+«j (i - ^3>)    /1+^(i-/S»)\ li+^(i-/!?)+i«[»-°ii2'SV 

X     I     TjJT  eXp I     TQ7     I OO              OO 

V          7i,2^o                 V          A,2^o          / x   £    Yl  h[n-i]h[n-k]6[i-k].          (60) 

/   7 + ««(l-iS>)\       \ '—'"- 
x Ei I (5T~2  I ~*~ M Through similar procedures to those used for the lag calcula- 

\             A,2 ao          )       ) tion and using (50) 

+ 7i)(|^
)r^Re(^-p*[^))-/2,1) _     /2o    7 + gg(l-/|g)) 

7 + <7i I {}-#?)' 
j(D) AD)   2 
M.2 il,2 "0 

xexH /iv ' /7 + <,0
2(i-A(?)' \ ^,2 ao J xexp   - 

T + o'i o2(l-^)' 

7(D)    2 
Jl,2 CT0 

XEM A' ' ^ f   7 + ^(1-^ 
V 7i.2a° / xEi ^Vl "     ' (61) 

V Jl,2 a0 I 
Equation (59) provides the MSE contribution due to lag, incor- v ' 
porating the channel fading correlation function in the integrals From (61), it is seen that the PSD of the fading channel does not 
(56)—(58) so that the lag MSE can be quickly obtained for dif- affect the noise misadjustment term, although the PDF of the 
ferent mobility rates or channel assumptions. channel gain is incorporated. 

I«OH|2 
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Fig. 3.    Comparison of results for Jakes model (69) and the AR2 model (7l>-f74) with (D = 0, fixed l[°J = 1), and with (D = Dopl,l[
DJ = 

normal calculation). /,2  calculated numerically for Jakes' spectrum. Dopplcr frequency of fj = lp — 4 cycles/sample. Shown for varying SNR. 
c, denoting 

G. Summary ofMSE in Rayleigh Fading 
The MSE of the RLS antenna array system has been decom- 

posed into the Wiener MSE, excess MSE due to lag misadjust- 
ment, and excess MSE due to noise misadjustment. The overall 
MSE of the system is given by the summation of these three 
MSE terms, which is given by (51), (59), and (61). The analysis 
has allowed for the separation of the complex Gaussian fading 
gain PDF from the PSD of the fading process. The effects of the 
time correlation of the fading process are captured in the four 
integrals (33), (56), (57), and (58). The "optimal" value of D 
is termed Dopt and selected to maximize /} x', as discussed in 
Section II [-B. The MSE is calculated as 

(62) 

artificially fixed /$ = 1. The Jakes' PSD is 

_ 2 

•'jakesV^     / 
U>\  > Ulj 

/>jake»M 

(64) 

(65) 

D = £>opt = arg (max \l[*{ j 

7 = 1 + 
CT-2Re (Wi?) '2,0 

o, 
J0(u<in) 

where uj is the Doppler frequency, and Jo{x) is the zero-order 
Bessel function of the first kind. 

For the filter of (22) and PSD of (64), the integrals (56) and 
(57) can be found with D = 0 for small u>a by using the approx- 
imation z = 1 4- ju, and where appropriate, A = 1. 

72,1 = s L< wr< 
0 

>2^ 
duj 

AD) 
1Y.2 

7 + ««(l-ig)) /7 + a0
2(l-/^)' 

• jfa> 

j(D)    2 
-•1,2 a0 

exp 
I{D)a2 

x Ei    - 

AD) 

•*g(l-/<?)' 

= ^2,1. 

The final integral (58) is given by 

(1-A) 

: Ckj 

(66) 

(67) 

•^2,0 — 

n W~2 
+ 1 

J0 

2RS(ll°l-p*[D)lW) '2.1 

(1 + A) 
_J_ 
2-0' (68) 

,(0) 

AD) 

x exp 

x Ei 

Hence, with fixed I[ 2 = 1, the MSE of the system is given by 

0 

(63) 

IV. NUMERICAL EXAMPLES 

A. Jakes' Model Fading 

 lj_ 

0 

ft2 

(-e^Ei(-7/org)) 

2-0 
^e^'oEi(-7/a0

2)V (69) 

This MSE result is compared with that of the AR2 model (see 
For the Jakes' model [22], approximate closed-form results     Section IV-B) in Fig. 3. Evaluation of the integrals for the gen- 

are available using the simplified case where D = 0 and with       eral case D ^ 0 and/or realistic /} 2  must be done numerically. 
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Fig. 4.    Autocorrelation of Jakes' model and AR2 approximation /j = 0.0001 cycles/sample. 

B. AR2 Fading 

In order to provide tractable mathematical expressions for this 
numerical example, the Jakes' model will be approximated as a 
second-order autoregressive process (AR2), with poles selected 
to provide a PSD close to that of the Jakes' model. This model 
provides not only an analytic solution but a simple implemen- 
tation for simulation. A good match between the Jakes' correla- 
tion and the AR2 correlation for small time offsets is found by 
selecting the poles according to the rule 

p _ U _ ^ exp(±j • 0.8 • ud) (70) 

where u>u is the discrete time Doppler frequency, and the poles 
are in the z-plane. The AR2 process and the resulting PSD is 
described in more detail in Appendix C. 

By way of a specific example, consider a system with a 1 
MHz signal bandwidth and 100 Hz fading, as would arise from 
a velocity of 67 mi/h (108 km/h) with a carrier frequency of 1 
GHz. In the discrete time domain after sampling at the 1 MHz 

Nyquist rate, these parameters give a fading rate of le — 4 cy- 
cles/sample or ojd — 2-K-le-A rad/sample. The AR model is 
then defined with poles at 0.9998 • exp(±j27r • 0.00008). The 
resultant autocorrelation is shown in Fig. 4. Simulations are also 
run with fa = 5c — 4 cycles/sample for comparison. 

For an AR2 process with poles at p and p*, the integral values 
are given in (71)—(74), shown at the bottom of the page, using 
the AR2 nomenclature of Appendix C. 

Plugging (71)—(74) into (63) provides a closed-form value of 
the MSE at the output of the antenna array combiner. 

C. Simulation and Discussion 

Simulations were performed with the AR2 model in order 
to confirm the analysis. The simulation results are compared 
to several analytic configurations, which show that the delay 
term D must be properly selected as described in (62), and I]^ 
cannot be simplified to unity but rather must be explicitly deter- 
mined. Since ultimately a metric such as bit error rate is of in- 

{D)_  (l-A)A 
il,2    — 1 + cos(2V>)    V * " A_lr2 1 ~ Xr2 

A-V2 cos(2V> + 20) - A-D-V2D+2 cos(2V> + 2D0 + 20) - X~2iA cos(2if>) + \-D-2r2D+i COS(2D0 + 2i/>) 
+ 

r 

l-2A-1r2cos(2f9) + A-V4 

cos(2V') - Ar2 cos(-20 + 2ip) 

'2.1 

/(D) _ J 

1 - 2Ar2 cos(20) + A2?'4 

 (l-A)-(l-r2)-|l-p2lsin(fl)  

(1 + A)(l -pA)(A -p)(l -p*A)(A -p*)sin{0 - angle(l -p2)) 
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 (l-A)sin(g)(l-r-')|l-i>''| >D+1 
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(72) 
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Fig. 6.    Cross-over probability (BER) from simulation. Dopplcr frequencies If; 
approximation with fading constant throughout a bit symbol. 

— 4,5f—4. Perfect tracking lines arc according to Gaussian interference 

terest, BER was extracted from the simulation in addition to the 
MSE. The simulation implemented a pseudo-CDMA system, as 
shown in Fig. I, where the signal is known by both receiver and 
transmitter in order to facilitate tracking, as is the case when a 
training sequence or pilot is available. Since the signal is known 
in this case, there are no information bits to extract. To extract a 
BER metric, bit decisions are modeled as a crossover decision. 
For CDMA reception, the signal is multiplied by a code (x* [n]) 
and accumulated. In this case, the "data" is all -fls; therefore, if 
the accumulator output is greater than zero, then there is no de- 
tection error, and if it is less than zero, then there is a detection 
error. This can equivalently be considered to be a system with 
perfect decision-directed feedback. This provides an adequate 
model for a general evaluation of the tracking performance of 
the system. 

It is assumed that each transmitter is power controlled so that 
the average power received by the base station from each mo- 
bile is the same, but the desired signal mean power <7Q is varied 
over [l 10 100] to better illustrate the BER performance. The 
interferers experience a static channel with unit mean received 

power, and the desired signal undergoes Rayleigh fading. The 
antenna array is comprised of three elements, spaced 0.4 wave- 
lengths apart. The desired transmitter has an angle-of-arrival 
(AOA) of 108°, and there are eight interferers with randomly 
assigned AOAs of 32°, 73°, 111°, 133°, 143°, 157°, 165°, 166°, 
and 168°. No AWGN is applied to the received vector; therefore, 
all noise considered is due to the interferers; this emphasizes the 
gains from null forming. 

With these parameters, the effective signal to noise is 0.125 • 
Op with one antenna, whereas with the three antennas, one can 
obtain 

£(l«o[n]|2) do'R" Mn = 0.512ag. 

This is a 6.1 dB improvement over the single antenna case. 
The simulations were run using AR2 fading rates of lc—4 and 

5c—4 cycles/sample. The results are seen in Figs. 5 and 6, which 
show the mean square error and bit error rate of the system as a 
function of the adaptation rate ft. Noting that 0 is the 3 dB band- 
width in units of rad/sample of the estimation filter, the x-axes 
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Fig. 8.    Time-varying combiner weight, illustrating the weight delay. ff„ = l,<r„/7 
component of i»i is shown. 

-2.9 dB, /d = If - i,J = le - 3, delay = 999 samples. Real 

are scaled by 1/2-K. The MSE simulations match the analysis 
for smaller ft, becoming less accurate for larger ft, where the 
noisy sample autocorrelation matrix degrades performance and 
the quasideterministic assumption breaks down. 

Both the analysis and simulations indicate that in order to at- 
tain reasonable performance, the 3 db bandwidth arising from ft 
must be selected to be about an order of magnitude larger than 
the Doppler frequency (Figs. 5 and 6). To consider why so much 
margin is needed in ft, consider the filter response H(e'"). The 
delay of the estimation filter h[n] at low frequencies is (l-ft)/ft 
samples, shown in Fig. 7. This delay is seen to be very signif- 
icant near the transition band when considered in units of de- 
grees. Thus, the large margin in the value of ft is required to ac- 
commodate this delay, which, otherwise, will cause lag error in 
the combiner. A plot of one of the time-varying weights, along 
with the optimal weight and a delayed version of the optimal 
weight, is given in Fig. 8. As the problem formulation is similar 
across the weights, showing one weight is adequate for quali- 
tative visualization. This figure clearly shows that for moderate 
lag errors, the lag takes the form of a minimally distorted but 
delayed version of the optimal weights, and the zero frequency 
filter delay of (1 — ft)/ft, which is 999 samples in the figure, 
characterizes this delay well. Most of the fading process power 

is near the edge of the band, where the group delay effects are 
strongest, exacerbating this problem. The plot of delay in de- 
grees (see Fig. 7) shows that about one decade of margin be- 
tween Doppler frequency to the filter 3 dB bandwidth is required 
in order to avoid this lag effect. It is also of interest to note that 
the BER performance of the 5e — 4 cycles/sample Doppler case 
is actually lower for higher SNR than the le — 4 cycles/sample 
case when ft = 2-n • le — 2, counter to expectations in a tracking 
problem; this is due to time diversity as the very deep fades 
that produce bit errors at high SNRs are also very brief, and at 
faster fading rates, the fades do not annihilate the entire 64-chip 
symbol. 

Fig. 9 shows MSE simulated and calculated with various 
values of D and I12 > demonstrating that the formulation of 
the complete analysis is required for accurate results. With the 
"optimal" D and calculated /} 2 , the results closely match the 
simulation. The simplest form to calculate would be D = 0 and 
artificially set I\ 2 = 1; this form gives large peaking when 
the Doppler frequency falls in the estimation filter transition 
band. Letting D = Dopl and setting l[ 2 = 1 also results in a 
large error. The error in these cases is particularly large for high 
SNRs because here, the correct handling of the cancellation 
of the at[n\ terms in the inverted autocorrelation matrix R and 
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Fig. 9.    MSE calculations for various values D and l\ 2 ,<r2 = 100. Dopt is the value of D that maximizes l[t'. DDC = A/(l — A) is the filter group delay 
at zero frequency; l[ v   = x indicates normal calculation; /[ x' = 1 fixes the value to unity. 

the cross-correlation vector p becomes more important. The 
filtering present in the sample autocorrelation matrix R means 
that even when the signal fades, there is residual filtered signal 
in the sample autocorrelation matrix so that near divide-by-zero 
conditions are avoided in the realized R; this motivates the 

definition of R, which leaves a "lagged residual" of a[n] in the 
form of the ((1 — l[ 2 )ao) term. It is also clear from the figure 
that the selection of the value of D is important. 

The result for the AR2 model [see (71)—(74)] is compared 
with the result for the Jakes' model [see (69}] in Fig. 3 with the 
simplifying conditions D = 0 and fixed I{ 2 = 1. As discussed 
above, these conditions do not allow a very accurate prediction 
of the performance, but the closed-form approximate result for 
the Jakes' model is available. Results obtained by numerical 
integration for the Jakes' model are also displayed for the most 
accurate formulation [see (62) and (63)]. The calculated MSE 
for the Jakes' and AR2 models are nearly identical, illustrating 
that the use of an AR2 approximation to Jakes' is appropriate. 

The performance is limited by the exponential weighting of 
the EW-RLS estimates. We have surmised that this is largely 
due to the phase shift imposed by the exponential filter. Lin et 
al. [19] suggested optimal weighting functions to replace the 
exponential weighting for the identification problem. Results 
similar to those could be found here from (63). However, the 
significance of this would be obscured by the complexity of the 
equations involved. 

It is of interest to compare the present tracking results with 
those derived for system identification of a Jakes fading channel 
[19] and the first-order Markov process [16], as well as for 
prediction of a chirped process [12]. The noise misadjustment 
is found to be approximately proportional to /9 in all of these 
cases, which is in agreement with (74). The lag misadjustment 
in [ 16] is found to be inversely proportional to 0, whereas in [ 19] 
and [12], it is found to be inversely proportional to ft2. From 
(71)—(74), it is clear that no such simplification is, in general, 
possible for the interference canceling mobile wireless commu- 
nications problem. The lag misadjustment is a function of the 

fading PSD and, in general, cannot be reduced to some simple 
polynomial of ft. 

V. CONCLUSION 

This paper has presented a derivation of the MSE that results 
from the application of the EW-RLS algorithm to an antenna 
array receiving signals degraded by a Rayleigh fading channel. 
It is shown that the time correlation of the fading channel can 
be extracted from the probability density function of the channel 
such that the exponential weighting used for the cross-correla- 
tion estimate could be considered to be a filtering operation. 
Considering the windowing function to be a filtering opera- 
tion allows the application of well-known Fourier analysis tech- 
niques so that the analysis can be conveniently applied to chan- 
nels with different fading PSDs. 

The application of Fourier analysis is similar to [19] but is 
applicable to the "interference canceling" tracking problem that 
characterizes the antenna array problem. This paper expands the 
use of such techniques, illustrating a methodology for applying 
such analysis when the correlation matrix of the received vector 
is time varying, as is frequently the case in communications 
problems. 

APPENDIX A 
AUTOCORRELATION MATRIX INVERSE DECOMPOSITIONS 

A. Decomposition of the Inverse of the Statistical Correlation 
Matrix R[n] 

It is frequently necessary throughout the analysis to separate 
the contributions of the desired signal and the interferers to 
the autocorrelation matrix inverse. This can be accomplished 
through straightforward application of the matrix inversion 
lemma. 

The decomposed correlation matrix is given by (10). The ma- 
trix inversion lemma applied to (10) gives 

RlWsi-l-!^bgfcfc:. (75) 
l-r-c^TiJR-icotn] 
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The inner product of the channel response with respect to the in- 
verse of the correlation matrix can be reduced to a simple form. 

c?[n]R-Mn]co[n] = -^»^L.       (76) 

1 +c'0'[n]R-1Co[n] 

Given the narrow angular dispersion of the channel model, this 
reduces to 

cS'[n]R-1[n]co[n] 
KN2 

(77) 
7 + |«0[n]|2 

where 7 provides a sense of the irreducible noise power pro 
jected into the signal space. 

1 
d0 R    do. (78) 

B. Decomposition of the Inverse of the Sample Correlation 

Matrix Estimate Ro[n] 

The matrix inversion lemma applied to (34) gives 

ftp [»] = ft"1 - (|«[n - Dtfli? +4 (l - /$>)) 
R-Mod^R"1 

•7 

7 + (|a[»-D]|^+a0»(l-/W))' 

(79) 

The inner product of the channel response with respect to the in- 
verse of the correlation matrix can be reduced to a simple form. 

c0'[n - D}RD [n]co[n - D] 
\«\[n-D}\*   

7 + ^(l-/1
(^)) + |«[n-P]P/1

(; (D) 
2 

(80) 

APPENDIX B 

It is informative to consider the SNR generated by the optimal 
Wiener combiner. In the context of a time-varying system, this 
provides the time-varying SNR that would result at the output 
of a Wiener combiner with perfect tracking capabilities. 

The Wiener estimator of xo[n] is given by 

x0[n] = c0[n]R-i[n]u[n]. (81) 

The signal power at the output (conditioned on the channel) is 

^(KMR-VICOHXOHI
2
) = (c^HR^McoM)2. 

(82) 
The total power of xo[n] is 

Ec(\x0[n]\2) = c/ZHR-VlcoH. (83) 

Subtracting the signal power from the total power gives the noise 
power, and the time-varying SNR is 

Cc/MR-^coM 
*l"J      l-Co>]R-i[n]coM' (6V 

Plugging in the results of (77) and simplifying gives 

*[»] = M. (85) 
7 

The SNR is proportional to the fading channel gain; therefore, 
the bit-error-rate performance with perfect channel tracking can 

be obtained by simply using the common equations for fading 
[2]. This has been used to provide the "perfect tracking" bit error 
rates of Fig. 6, with the approximation of the interferer signals 
as Gaussian. It is well known that this approximation holds well 
in DS-CDMA systems for low SNRs, but performance at higher 
SNRs can be better than indicated with this approximation be- 
cause the tails of the binomial distribution are not as long as 
those of the Gaussian distribution. 

APPENDIX C 
PROPERTIES OF THE AR2 PROCESS 

The AR2 process of interest has poles that form a conjugate 
pair at p andp*, where p = rexp(jO), 0 < 8 < -n, excited by a 
white Gaussian process. The generating filter under considera- 
tion will be normalized to give an output power unchanged from 
the power of the white input process. 

The autocorrelation function of such an AR2 process with 
unit power input can be found in [11]. With 

1> = 0--- angle(l - P
2) (86) 

£ = sin(0)(l-r2)-|l-p2| (87) 

and with the process normalized to obtain a unit output power, 
the resulting autocorrelation function is 

rM 
p[n] = -. —rr cos(|n|f? -I- '(/') 

and the PSD is 

^(*)IH<I*I<II/I>I = 

|cos(^)| 

B 

jCOs(l/>)| 

1 

(88) 

(89) 
(1 -pz~l){l - j)*z~l){\ - pz)(l -p*z)' 

The power normalized two-pole filter applied to the white exci- 
tation is then 

1 
#AR2(2)||p|<|2| = 

B 
-v (9°) COS(V-)     (1 -pz-^)(l -p*2-l)' 

The squared autocorrelation is required for (32). This is given 
by 

r2|n| 

p H = 1 + cos(2-</>) 
(l + cos{2\n\0 + 2ip)).       (91) 
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